Weighted ensemble transform Kalman filter for image assimilation
نویسندگان
چکیده
منابع مشابه
Weighted Ensemble Transform Kalman Filter for Image Assimilation
This paper proposes an extension of the Weighted Ensemble Kalman filter (WEnKF) proposed by Papadakis et al. (2010) for the assimilation of image observations. The main contribution of this paper consists in a novel formulation of the Weighted filter with the Ensemble Transform Kalman filter (WETKF) incorporating directly as a measurement model a nonlinear image reconstruction criterion. This t...
متن کاملMulti-Model Ensemble Approaches to Data Assimilation Using the 4D-Local Ensemble Transform Kalman Filter
Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including s...
متن کاملThe Hybrid Local Ensemble Transform Kalman Filter
Hybrid data assimilation methods combine elements of ensemble Kalman filters (EnKF) and variational methods. While most approaches have focused on augmenting an operational variational system with dynamic error covariance information from an EnKF [1][2][4][5][8], we take the opposite perspective of augmenting an operational EnKF with information from a simple 3D-Variational (3D-Var) method [7]....
متن کاملEnsemble Kalman filter with the unscented transform
A modification scheme to the ensemble Kalman filter (EnKF) is introduced based on the concept of the unscented transform (Julier et al., 2000; Julier and Uhlmann, 2004), which therefore will be called the ensemble unscented Kalman filter (EnUKF) in this work. When the error distribution of the analysis is symmetric (not necessarily Gaussian), it can be shown that, compared to the ordinary EnKF,...
متن کاملA Local Ensemble Transform Kalman Filter Data Assimilation System for the Global FSU Atmospheric Model
Data assimilation is the process by which measurements and model predictions are combined to obtain an accurate representation of the state of the modeled system. We implemented a data assimilation scheme called LETKF (local ensemble transform Kalman filter) with FSUGSM (Florida State University Global Spectral Model) and made an experiment to evaluate the initial condition generated to numeric...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Tellus A: Dynamic Meteorology and Oceanography
سال: 2013
ISSN: 1600-0870
DOI: 10.3402/tellusa.v65i0.18803